دستیابی به یک نتیجه دقیق و مناسب در فرایند چهارمرحله ای آنالیز سفر به روش UTMS وابسته به برآورد دقیق و قابل قبول تعداد سفرهای تولید شده در نواحی مختلف شهر است. در بررسی مرحله ایجاد سفر با توجه به وابستگی شدید میزان سفر تولید شده در یک ناحیه به اطلاعات سهل الوصولی نظیر جمعیت ، برآورد تولید سفر معمولاً با دقت خوبی انجام میگیرد. از اینروست که در صورتیکه مقادیر برآورد شده دیگر نظیر مقادیر جذب سفر با برآوردهای تولید سفر همخوانی نداشته باشد،این تولید سفر است که مورد قبول واقع شده و برآوردهای دیگر نظیر جذب سفر با توجه به این موضوع تصحیح میشوند. افزایش دقت پیش بینی به صورت کلی از دو راه امکان پذیر می گردد. اول افزایش دقت و ابعاد پایگاه داده های مورد استفاده و دوم استفاده از روشهای پیشرفته تر مدلسازی. از آنجاییکه افزایش کیفیت و کمیت اطلاعات مورد نیاز امری هزینه بر(چه از نظر مالی و چه از نظر زمانی)است،لذا به نظر می رسد که بهتر آن است که به دنبال استفاده از روشهای پیشرفته تر مدلسازی باشیم. در این میان روش مدلسازی عصبی-فازی به عنوان یک گزینه مناسب برای ایجاد مدل تولید سفر در این تحقیق مورد بررسی و آزمون قرار گرفته است . نکته مهم در استفاده از سیستمهای عصبی-فازی ، نحوه آموزش این سیستمها با توجه به محدودیت اطلاعات مربوط به این مساله است. روش ارایه شده در این مقاله با ترکیب مدلسازی کلاسیک مبتنی بر رگرسیون خطی و سیستمهای عصبی – فازی تا حد زیادی در انجام این امر موفق بوده است. این روش مدلسازی برای پردازش مدلهای شهر شیراز بر مبنای اطلاعات مطالعه جامع حمل و نقل سال 1369 به کار گرفته شد. مقایسه های انجام شده نشان میدهد که مدلهای ساخته شده توسط روش ارایه شده قابلیت پیاده سازی دقیقتر رابطه بین پارامترهای اصلی مدل و تعداد سفرهای تولید شده را در مقایسه با روشهای مبتنی بر آنالیز رگرسیون دارند واین در حالی است که از لحاظ اطلاعات مورد نیاز هزینه اضافی ای را تحمیل نمیکنند .