

(/// ,// ,//)

. .

Email: mshariat@ut.ac.ir , : , : :

.

*

- . -[]

)

.[].

.

 $k_{D}[\frac{cc(gas)}{cc(polymer).pa}]$ p_{L}, p_{o} ()

:

.

.

.[].

· · ·

:

:

-[].

-

$$X = k_{D}p \qquad ()$$

$$Q_{S} = \frac{RT\rho_{app}}{2000 \tau C_{R}L^{2}} \frac{I_{4}}{I_{5}} \int_{p_{L}}^{p_{a}} k_{D}^{2} p dp = A_{2} \frac{I_{4}}{I_{5}} \overline{p} \Delta p ()$$

$$\therefore \qquad A_{2} \frac{I_{4}}{I_{5}} [kmol/(m s p a^{2})]$$

$$A_{2}^{'} = \frac{RT \rho_{app}}{2000 \tau C_{R}L^{2}} k_{D}^{2} \qquad ()$$

$$Q_{oua}$$

$$Q_{S} \qquad Q_{S}$$

$$\begin{array}{c} \vdots \\ \mathcal{Q}_{total} = \mathcal{Q}_{g} + \mathcal{Q}_{S} = \frac{N_{t}}{L} \Big[G_{1}I_{1} + G_{2}I_{2} + G_{3}I_{3} \Big] \Delta p + \dots \\ & A_{2} \frac{I_{4}}{I_{5}} f(p, \dots) \\ & & () \\ & () \\ () \\ () \\ () \\ () \\ () \\ J_{total} = \frac{\mathcal{Q}_{total}}{S_{total} \Delta p} = A_{1} \Big[G_{1}I_{1} + G_{2}I_{2} + G_{3}I_{3} \Big] + \dots \\ & A_{2} \frac{I_{4}}{I_{5}} \frac{f(p, \dots)}{\Delta p} \\ & () \\ A_{1} \left[m^{-3} \right] \\ \vdots \\ A_{1} = \frac{N_{t}}{S_{total}} , A_{2} = \frac{RT\rho_{app}}{2000 \tau C_{R}L^{2}S_{total}} s^{2} \\ () \end{array}$$

:[]
$$J_{total} = A_1 [G_1 I_1 + G_2 I_2 + G_3 I_3] + A_2 \frac{I_4}{I_5} \frac{p}{p}$$
()

$$G_{1} = \left[\frac{32\pi}{9MRT}\right]^{\frac{1}{2}} , \quad G_{2} = \frac{\pi}{M\overline{C}} , \quad G_{3} = \frac{\pi\overline{p}}{8\eta RT}$$

$$()$$

$$I_{1} = \frac{1}{\sqrt{2\pi\sigma}} \int_{r=0}^{0.05\,\lambda} r^{3} \exp\left[-\frac{1}{2}\left(\frac{r-\overline{r}}{\sigma}\right)^{2}\right] dr$$

$$()$$

$$I_{2} = \frac{1}{\sqrt{2\pi\sigma}} \int_{r=0.05\,\lambda}^{50\,\lambda} r^{3} \exp\left[-\frac{1}{2}\left(\frac{r-\overline{r}}{\sigma}\right)^{2}\right] dr$$

$$()$$

$$I_{3} = \frac{1}{\sqrt{2\pi\sigma}} \int_{r=50\,\lambda}^{r_{max}} r^{4} \exp\left[-\frac{1}{2}\left(\frac{r-\overline{r}}{\sigma}\right)^{2}\right] dr$$

$$()$$

.

.

$$\begin{bmatrix} \\ \end{bmatrix} \\ \frac{Q_S}{A_p} = \frac{RT\rho_{app}}{1000 \tau C_R S_s L_p} \int \frac{X^2}{p} dp$$
 ()

$$\rho_{app} [kg/m^3] \qquad \tau \\ C_R [kg/(s.m^2)] \\ X [kmol/kg]$$

$$S_S [m^2/kg] \qquad \qquad A_p [m^2]$$

,

:

$$A_{p} = \pi I_{4} , S_{s} = 2\pi LI$$

$$I_{4} = \int_{r=0}^{r_{max}} N(r)r^{2}dr \quad I_{5} = \int_{r=0}^{r_{max}} N(r)rdr$$

$$. \qquad L = \tau L_{p}$$
()

() .()	(
$(R_3 \cong 0)$			()		[]	Rangarajan
					[] Trembl Simplex	ay Rangarajan
$I_{total} = I_1 +$	$-I_2$, $Q_{total} = Q_1$	+ <i>Q</i> ₂	()		[]	Wang
Q_1	Q_2	Q_{total}	$\left[\frac{kmol}{s}\right]$	-		
$Q_2 = \frac{N_t}{L}(G$: $G_1I_1 + G_2I_2 + G_3I_3$	$\Delta p + A_2' \frac{I_4}{I_5}$	$p_{\Delta p}^{-}$ ()			
		-	÷		()
$Q_1 = P S_1$	$\frac{\Delta p}{L_{eff}}$	S 1 [n	() n ²]			
L	$P\left[\frac{k}{n}\right]$	$\frac{\Delta p}{n^2 . pa.s}$	[<i>pa</i>]	()		
	()	()		Left 1 (1) (2)	1) (2) (1)	
$Q_{total} = \frac{N}{L}$	$\frac{t}{C}(G_{11}I + G_2I_2 + G_2I_2)$: G ₃ I ₃)Δр+.	$A_2' \frac{I_4}{I_5} \frac{p_{\Delta p}}{p_{\Delta p}} + \dots$			R ₁ R ₂ R ₃
			$\frac{PS_1 \frac{\Delta p}{L_{eff}}}{()}$:
$J_{total} = -\Delta$	$\frac{Q_{total}}{\Delta p S_{total}}$		()) I	: veff ()

 $A_1 \quad A_2$

()

 $J_{total} = X_1 - X_2$

Y () :

$$Y_i = a_i X_1 + b_i X_2 + c_i \tag{)}$$

Newto

$$a_{i} = G_{I}I_{1,i} + G_{2}I_{2,i} + G_{3,i}I_{3,i}$$

$$b_{i} = \frac{I_{4,i}}{I_{5,i}}\overline{p_{i}} \qquad C_{i} = \frac{P_{i}}{L_{eff}}$$
()
$$C_{i} \qquad b_{i} \qquad a_{i}$$
:
$$SS_{R} = \sum_{i=1}^{n} [Y_{expi} - (a_{i}X_{1} + b_{i}X_{2} + c_{i})]^{2}$$
()

 $X_2 \quad X_1$

$$\frac{\partial SS_{R}}{\partial X_{1}} = 0 , \quad \frac{\partial SS_{R}}{\partial X_{2}} = 0$$
()

:

min
$$SS_R(A_1, A_2, r, \sigma)$$
 subject to:

$$LB_{A_{1}} < A_{1} < UB_{A_{1}}$$

$$LB_{A_{2}} < A_{2} < UB_{A_{2}}$$

$$0 < \overline{r} < r_{\max}$$

$$\int_{0}^{r_{\max}} \frac{N(r)}{N_{t}} dr = 1$$
()

$$A_2 \quad A_1$$

$$\begin{pmatrix} LB_{A1} & UB_{A_1} & LB_{A1} & UB_{A_2} \end{pmatrix}$$

.

Quasi Newton

.

.(Local Minimums)

Quasi Newton

:

:

.

	Ar	N_2
$k_D\left(\frac{cm^3}{cm^3.atm}\right)$	0.15	0.0753
$C_{s}\left(\frac{cm^{3}}{cm^{3}}\right)$	6.72	9.98
$b\left(\frac{1}{atm}\right)$	0.0317	0.0156
$D_H \times 10^8 (\frac{cm^2}{s})$	1.7	1.03
$D_L \times 10^8 \left(\frac{cm^2}{s}\right)$	0.639	0.468

[].	
-----	--

d	[°A

	$d [^{\circ}A]$	$\eta \times 10^{7}$ [pa.s]
Ar	3.542	222
N_2	3.798	178

• L.,,,	$= 20000^{\circ}A$
1 eff	20000 11

$A_1 \times 10^{-16} [1/m^3]$	6.13
$A_2 \times 10^{10} [Kmol / m^3 s.pa^2]$	8.40
<i>r</i> (°A)	47.34
σ (°A)	5.05

:

:

 $\cdot L_{eff} = 5000^{o}A$

$A_1 \times 10^{-19} [1/m^3]$	2.74
$A_2 \times 10^8 [Kmol / m^3 s.pa^2]$	1.74
<i>r</i> (°A)	17.61
σ (°A)	3 46

•

-	(<i>C</i> _s	S	_b)	(<i>D</i> _L	D_{H})	
		G	. (λ)		

.

:

() ()

() ()

*	
$P_o \times 10^{-5} [pa]$	$J_{\rm exp} \times 10^{11} [Kmol / m^2.s.pa^2]$
1.15	0.216
1.28	0.216
1.73	0.205
1.93	0.220
2.40	0.233
3.00	0.227
3.43	0.259
3.96	0.255
4.47	0.281
5.00	0.277
5.53	0.286
6.04	0.307
6.57	0.324
p_L	$=1 \times 10^{5} pa$ () *

* $J_{exp} \times 10^{-6} [pa]$ $J_{exp} \times 10^{10} [Kmol / m^2.s.pa^2]$ 0.50 0.431 0.95 0.485 1.43 0.526 1.84 0.628 2.31 0.703 $p_L = 0pa$ () *

.

()

:

- 1 Setford, S. J. (1995). A basic introduction to separation science. Rapra Technology LTD.
- 2 Madaeni, S. S. (2003). Membranes and Membrane Processes, Tagh-Bostan Publication, Iran.
- 3 Chauhan, R. S. and Panday, P. (2001). "Membrane for gas separation." Prog. Polym. Sci., Vol. 26, PP. 853-893.
- 4 Kesting, R. E. and Fritzche, A. K. (1993). *Polymeric gas separation membranes*. Wiley Interscience Publishers., New York.
- 5 Seader and Henley. (1998). Separation process principles. John Wiley and Sons., New York.
- 6- Hojjati, S. A. (2002). *The Modeling of Multi-component gas mixture transport through membranes*, M.S. Thesis, Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran.
- 7 Rangarajan, R., Mazid, M. A. and Matsuura, Sourirajan, T. S. (1984). "Permeation of pure gases under pressure through asymmetric porous membranes. Membrane characterization and prediction of performance." *Ind. Eng. Chem. Process Des.Dev*, Vol. 23, PP. 79-87.
- 8 Wang, D., Li, K. and Teo, W. K. (1995). "Effects of temperature and pressure on gas permselection properties in asymmetric membranes." *Journal of membrane science*, Vol. 105, No. 1-2, PP. 89-101.

- 9 Momeni, M. (1997). *Transport of multi-component gas mixture through membranes*, M.S. Thesis, Department of chemical engineering, Sharif University of Technology, Tehran, Iran.
- 10 Wang, D., Xu, R., Jiang, G. and Zhu, B. (1990). "Determination of surface dense layer structure parameters of the asymmetric membrane by gas permeation method." *Journal of membrane science*, Vol. 52, No. 1, PP. 97-108.
- 11 -Tremblay, A. Y., Fouda, A., Matsuura, T. and Sourirajan, S. (1988). "The use of the simplex method to characterize dry cellulose acetate membrane for gas separations." *Canadian Journal of Chemical* Engineering, Vol. 66, PP. 1027-10430
- 1 Solution-diffusion Model
- 2 Pore Flow Model
- 3 Microvoids
- 4 Slip Flow
- 5 Scanning Electron Microscopy (SEM)
- 6 Probability Density Function
- 7 Hybrid Algorithm