بازتاب و شکست موج SH در مرز ناهموار بین دو محیط ایزوتروپ جانبی

چکیدہ

SH

SH

() ()

واژه های کلیدی : موج SH - بازتاب - شکست - پراش - تموج فصل مشترک - روش رایلی

مقدمه

*

.

.

,

[] []

SH : SH .

[] [] •

[].

.

. .

.

n

معادلات اساسی معادلات اساسی ت_{ان} . \mathcal{E}_{ij} [].

•

 \mathcal{E}_{kl}

$$v_x$$
 - :
 $\tau_{ij} = C_{ijkl} \varepsilon_{kl}$ $i, j, k, l = 1, 2, 3$ ()

 v_z

.

 μ_z

-

.

$$: \mathbf{u}$$

$$\varepsilon_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) = \frac{1}{2} \left(u_{k,l} + u_{l,k} \right) \qquad ()$$

$$arepsilon_{ijkl} \ arepsilon_{kl} \ arepsilon_{ij}$$

$$C_{iikl}$$
 ()

.

$$\mu_{x} = E_{x}/2(1+\upsilon_{x})$$

$$C_{ijkl} \qquad \lambda$$

$$\vdots$$

$$C_{1111} = \frac{E_{x}(\eta-\upsilon_{z}^{2})}{\lambda(1+\upsilon_{x})}, C_{1122} = \frac{E_{x}(\eta\upsilon_{x}+\upsilon_{z}^{2})}{\lambda(1+\upsilon_{x})}, C_{1212} = \mu_{x},$$

$$C_{1133} = \frac{E_{x}\upsilon_{z}}{\lambda}, C_{3333} = \frac{E_{x}(1-\upsilon_{x})}{\lambda}, C_{1313} = \mu_{z}$$

$$()$$

$$\eta = E_{x}/E_{z} \qquad \lambda = \eta(1-\upsilon_{x}) - 2\upsilon_{z}^{2}$$

$$[]$$

$$\nabla \cdot \mathbf{\tau} = \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} \tag{)}$$
$$\rho \qquad \nabla \cdot \mathbf{\tau}$$

.

$$\mathbf{u} = (u, v, w)$$

$$\begin{cases} \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = \rho \frac{\partial^2 u}{\partial t^2} \\ \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} = \rho \frac{\partial^2 v}{\partial t^2} \\ \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} = \rho \frac{\partial^2 w}{\partial t^2} \\ x - z \qquad SH \end{cases}$$
()

v = v(x, z, t) u = w = 0 . ()

$$C_{ijkl} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & 0 & 0 & 0 \\ C_{1122} & C_{1111} & C_{1133} & 0 & 0 & 0 \\ C_{1133} & C_{1133} & C_{3333} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{1212} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{1313} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{1313} \end{bmatrix}$$
()
$$C_{1212} = (C_{1111} - C_{1122})/2$$

.

- .

$$\begin{bmatrix} \end{bmatrix} \qquad \qquad \mu_z \quad \upsilon_z \ \upsilon_x \ E_z \ E_x \\ \vdots \\ E_z \ E_x \ - \end{bmatrix}$$

.

$$\zeta = d\cos(px)$$
$$d \qquad \frac{2\pi}{p}$$

.

 $\mathcal{A}_{m}(m=1,2) \qquad SH$ \vdots $\mu_{x} \frac{\partial^{2} v_{1}}{\partial x^{2}} + \mu_{z} \frac{\partial^{2} v_{1}}{\partial z^{2}} = \rho_{1} \frac{\partial^{2} v_{1}}{\partial t^{2}} \qquad (-)$ $\mu_{x}' \frac{\partial^{2} v_{2}}{\partial x^{2}} + \mu_{z}' \frac{\partial^{2} v_{2}}{\partial z^{2}} = \rho_{2} \frac{\partial^{2} v_{2}}{\partial t^{2}} \qquad (-)$ $y \qquad V_{m}$ $. \qquad M_{m}$

 $\begin{array}{ccccccccc}
\mu_{x} & & & \\
\mu_{z} & \mu_{x}' & & \mu_{z} \\
SH & & & () \\
& & & x-z
\end{array}$

$$: \qquad z \quad x$$

$$v_{m}(x,z,t) = A \exp \left\{-i(k_{x}x + k_{z}z - \omega t)\right\}, ; m = 1,2 ()$$

$$k_{z} \quad k_{x} \quad SH \qquad A$$

$$k_{z} \quad z \quad x$$

$$q = k_{x} \sqrt{\frac{\mu_{x}}{\mu_{z}} \left(\frac{1}{\sin^{2} \theta} - 1\right)}$$

$$r = k_{x} \sqrt{\frac{\mu_{x}'}{\mu_{z}'} \left(\frac{1}{\sin^{2} \delta} - 1\right)}$$

$$SH \qquad \delta \quad \theta$$

$$\frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} = \rho \frac{\partial^2 v}{\partial t^2}$$
()

$$\tau_{yx} = \mu_x \frac{\partial v}{\partial x}; \quad \tau_{yz} = \mu_z \frac{\partial v}{\partial z} \quad ()$$

$$\mu_x \frac{\partial^2 v}{\partial x^2} + \mu_z \frac{\partial^2 v}{\partial z^2} = \rho \frac{\partial^2 v}{\partial t^2}$$
 ()

$$z = \zeta(x) \qquad ()$$

$$y \qquad \zeta$$

$$Z \qquad y \qquad \chi$$

$$M_1 \cdot () \qquad M_2 - \infty < z \le \zeta(x)$$

$$\zeta(x) \le z < \infty$$

$$()$$

$$\zeta(x) = \sum_{n=1}^{\infty} \left(\zeta_n \, e^{inpx} + \zeta_{-n} \, e^{-inpx} \right) \tag{()}$$

$$n \qquad p \qquad \zeta_{-n} \quad \zeta_n$$
$$\cdot \qquad i = \sqrt{-1}$$

$$\zeta_{1} = \zeta_{-1} = \frac{d}{2}, \quad \zeta_{\pm n} = \frac{(c_{n} \mp is_{n})}{2}, \quad n = 2, 3, 4, \dots ()$$

: () ()

$$\zeta = d\cos(px) + c_2\cos(2px) + s_2\sin(2px)$$

$$\dots + c_n\cos(npx) + s_n\sin(npx) + \dots \qquad ()$$

$$= \sum_{n=1}^{\infty} c_n\cos npx + \sum_{n=2}^{\infty} s_n\sin npx$$

SH

С

.

SH

.

ω

 $\omega = k_x c$

$$n$$

$$: v_{2}^{ir-refr} = D_{n} e^{-ir_{n}z} \exp\left\{-i\omega\left(\frac{x\sin\delta_{n}}{\beta_{2}}-t\right)\right\} ()$$

$$+ D_{n}' e^{-ir_{n}'z} \left\{-i\omega\left(\frac{x\sin\delta_{n}'}{\beta_{2}}-t\right)\right\}$$

$$r_n = k \sqrt{\mu'_x \left(1/\sin^2 \delta_n - 1\right)/\mu'_z}$$

$$r'_{n} = k \sqrt{\mu'_{x} \left(\frac{1}{\sin^{2} \delta'_{n} - 1} \right) / \mu'_{z}}$$

$$\delta'_{n} \delta_{n} \qquad D'_{n} D_{n}$$

$$\delta_{n} \theta'_{n} \theta_{n} \qquad z$$

$$\delta'_{n} \delta'_{n} \qquad \delta'_{n} \delta'_{n} \qquad \delta'_{n} \delta'_{n}$$

$$\delta'_{n}$$
:[]

$$\sin \theta_{n} - \sin \theta = \frac{np \beta_{1}}{\omega}, \sin \theta'_{n} - \sin \theta = -\frac{np \beta_{1}}{\omega}, ()$$

$$\sin \delta_{n} - \sin \delta = \frac{np \beta_{2}}{\omega}, \sin \delta'_{n} - \sin \delta = -\frac{np \beta_{2}}{\omega}$$

$$M_{1} \qquad V_{1}$$

:

$$v_{1} = \left\{ Ae^{-iqz} + Be^{iqz} \right\} \exp\left[-i\omega(\frac{x\sin\theta}{\beta_{1}} - t) \right]$$

$$+ \sum_{n} B_{n} e^{iq_{n}z} \exp\left\{ -i\omega(\frac{x\sin\theta_{n}}{\beta_{1}} - t) \right\} \quad ()$$

$$+ \sum_{n} B_{n}' e^{iq_{n}z} \exp\left\{ -i\omega(\frac{x\sin\theta_{n}}{\beta_{1}} - t) \right\}$$

$$v_{2}$$

$$M_{2}$$

:

$$v_{2} = De^{-irz} \exp\left[-i\omega\left(\frac{x\sin\delta}{\beta_{2}}-t\right)\right]$$

$$+ \sum_{n} D_{n} e^{-ir_{n}z} \exp\left\{-i\omega\left(\frac{x\sin\delta_{n}}{\beta_{2}}-t\right)\right\} \quad ()$$

$$+ \sum_{n} D_{n}' e^{-ir_{n}'z} \exp\left\{-i\omega\left(\frac{x\sin\delta_{n}'}{\beta_{2}}-t\right)\right\}$$

$$D_{n}' \quad D_{n} \quad D \quad B_{n}' \quad B_{n}$$

$$D_{n}' \quad D_{n} \quad D \quad B_{n}' \quad B_{n}$$

$$\hat{\omega}_{1} \text{ Let } \alpha_{1}(z), z = 1$$

$$[]$$

$$: SH$$

$$v_{1}^{inci+reg_refl} = \{Ae^{-iqz} + Be^{iqz}\}e^{-i\omega\left(\frac{x\sin\theta}{\beta_{1}}-t\right)} ()$$

$$SH$$

$$B A$$

$$SH$$

$$\beta_{1} = \sqrt{\mu_{x}/\rho_{1}}$$

$$M_{2}$$

$$:$$

$$v_{2}^{reg_refr} = De^{-irz}e^{-i\omega\left(\frac{x\sin\delta}{\beta_{2}}-t\right)} ()$$

$$D$$

$$\delta$$

$$\beta_{2} = \sqrt{\frac{\mu_{x}'}{\rho_{2}}}$$

$$: \theta$$

$$()$$

$$k_{x}$$

$$n$$

$$:$$

$$v_{1}^{ir_refl} = B_{n}e^{iq_{n}z} \exp\left\{-i\omega\left((x\sin\theta_{n})/\beta_{1}-t\right)\right\}$$

$$+B'_{n}e^{iq'^{n}z} \exp\left\{-i\omega\left((x\sin\theta'_{n})/\beta_{1}-t\right)\right\}$$

$$()$$

$$q'_{n} = k \sqrt{\mu_{x} \left(\frac{1}{\sin^{2} \theta_{n}^{\prime} - 1}{\mu_{z}} \right)}$$
$$\theta'_{n} \qquad \theta_{n}^{\prime} \qquad \theta_{n}^{\prime} \qquad B'_{n} \qquad B'_{n}$$

$$Ae^{-iq\zeta} + Be^{iq\zeta} + \qquad ()$$

$$\sum_{n} \left\{ B_{n} e^{iq_{n}\zeta} \exp(-inpx) + \sum_{n} B_{n}' e^{iq_{n}'\zeta} \exp(inpx) \right\} =$$

$$De^{-ir\zeta} + \sum_{n} \left\{ D_{n} e^{-ir_{n}\zeta} \exp(-inpx) + \sum_{n} D_{n}' e^{-ir_{n}'\zeta} \exp(inpx) \right\}$$

$$A \left\{ \mu_{z} q - \zeta' \mu_{x} \left(\omega \frac{\sin \theta}{\beta_{1}} \right) \right\} e^{-iq\zeta} + B \left\{ -\mu_{z} q - \zeta' \mu_{x} \left(\omega \frac{\sin \theta}{\beta_{1}} \right) \right\}$$

$$\times e^{iq\zeta} - \sum_{n} B_{n} \left\{ \mu_{z} q_{n} + \zeta' \mu_{x} \left(\omega \frac{\sin \theta}{\beta_{1}} + np \right) \right\} e^{-inpx} e^{iq_{n}\zeta}$$

$$- \sum_{n} B_{n}' \left\{ \mu_{z} q_{n}' + \zeta' \mu_{x} \left(\omega \frac{\sin \theta}{\beta_{1}} - np \right) \right\} e^{-inpx} e^{iq_{n}\zeta}$$

$$= D \left\{ \mu_{z}' r - \zeta' \mu_{x}' \left(\omega \frac{\sin \theta}{\beta_{1}} + np \right) \right\} e^{-inpx} e^{-ir_{n}\zeta}$$

$$+ \sum_{n} D_{n} \left\{ \mu_{z}' r_{n}' - \zeta' \mu_{x}' \left(\omega \frac{\sin \theta}{\beta_{1}} - np \right) \right\} e^{-inpx} e^{-ir_{n}\zeta}$$

$$()$$

$$() () ()$$

.

$$\begin{bmatrix} \tau_{ij} \end{bmatrix} \begin{bmatrix} -\zeta' / \sqrt{1 + \zeta'^2} \\ 0 \\ 1 / \sqrt{1 + \zeta'^2} \end{bmatrix} = \frac{1}{\sqrt{1 + \zeta'^2}} (\tau_{yz}^m - \zeta' \tau_{yx}^m)$$

$$m \qquad x \qquad \zeta \qquad \zeta'$$

.

.

 $z = \zeta(x)$

$$B_{n}\mu_{z}q_{n} + D_{n}\mu_{z}r_{n} = i\zeta_{-n}\left\{(A+B)[np\mu_{x} - \beta_{1} - q^{2}\mu_{z}] - D[np\mu_{x}' \frac{\omega\sin\theta}{\beta_{1}} - r^{2}\mu_{z}']\right\}$$

 B'_n

 $\exp(inpx) \qquad D'_n$

$$z = \zeta(x), \text{ where } v_1 = v_2 \qquad ()$$

$$z = \zeta(x), \text{ where } \tau_{yz}^1 - \zeta' \tau_{yx}^1 = \tau_{yz}^2 - \zeta' \tau_{yx}^2 ()$$

$$() \\ \vdots \\ M_1$$

$$\tau_{yx}^{1} = \mu_{x} \frac{\partial v_{1}}{\partial x}; \quad \tau_{yz}^{1} = \mu_{z} \frac{\partial v_{1}}{\partial z}$$
()

$$: \qquad M_2$$

$$\tau_{yx}^2 = \mu'_x \frac{\partial v_2}{\partial x}; \quad \tau_{yz}^2 = \mu'_z \frac{\partial v_2}{\partial z} \qquad ()$$

$$() \qquad () \qquad ()$$

$$\mu_{z} \frac{\partial v_{1}}{\partial z} - \zeta' \mu_{x} \frac{\partial v_{1}}{\partial x} = \mu'_{z} \frac{\partial v_{2}}{\partial z} - \zeta' \mu'_{x} \frac{\partial v_{2}}{\partial x} \quad ()$$

$$() \quad () \quad ()$$

$$\vdots \quad ()$$

$$\begin{split} \gamma_{1}^{n} &= \sqrt{\mu_{x} \left(1/\sin^{2}\theta_{n} - 1 \right)/\mu_{z}}, \\ \gamma_{1}^{\prime n} &= \sqrt{\mu_{x} \left(1/\sin^{2}\theta_{n}^{\prime} - 1 \right)/\mu_{z}}, \\ \gamma_{2}^{n} &= \sqrt{\mu_{x}^{\prime} \left(1/\sin^{2}\theta_{n} - 1 \right)/\mu_{z}^{\prime}}, \\ \gamma_{2}^{\prime n} &= \sqrt{\mu_{x}^{\prime} \left(1/\sin^{2}\theta_{n}^{\prime} - 1 \right)/\mu_{z}^{\prime}}. \end{split}$$

$$()$$

$$\zeta_{-n} = \zeta_n = \begin{cases} 0 & \text{if } n \neq 1 \\ d/2 & \text{if } n = 1 \end{cases}$$
$$z = d \cos px$$

 $D'_{1} \quad B'_{1} \quad D_{1} \quad B_{1}$ $() \qquad n = 1$ \vdots $B_{1} = \frac{\Delta B_{1}}{\Delta_{1}}, \quad D_{1} = \frac{\Delta D_{1}}{\Delta_{1}}, \quad B'_{1} = \frac{\Delta B'_{1}}{\Delta'_{1}}, \quad D'_{1} = \frac{\Delta D'_{1}}{\Delta'_{1}} \quad ()$

$$\begin{split} \Delta_{1} &= \gamma_{1}^{1} + \frac{\mu_{z}' \gamma_{2}^{1}}{\mu_{z}}, \quad \Delta_{1}' = \gamma_{1}'^{1} + \frac{\mu_{z}' \gamma_{2}'^{1}}{\mu_{z}} \\ \Delta B_{1} &= i \frac{kd}{2} \left\{ (A+B) [-\gamma_{1}^{2} + \frac{\mu_{x} p}{\mu_{z} k}] + (A-B) \right. \\ &\times [\frac{\gamma_{1} \mu_{z}' \gamma_{2}^{1}}{\mu_{z}}] + D \left[\frac{\gamma_{2}^{2} \mu_{z}'}{\mu_{z}} - \frac{\gamma_{2}^{1} \gamma_{2} \mu_{z}'}{\mu_{z}} - \frac{\mu_{x}' p}{k \mu_{z}} \right] \right\} \\ \Delta D_{1} &= i \frac{kd}{2} \left\{ (A+B) [-\gamma_{1}^{2} + \frac{\mu_{x} p}{\mu_{z} k}] + (A-B) \right. \\ &\times [-\gamma_{1} \gamma_{1}^{1}] + D \left[\frac{(\gamma_{2}^{1})^{2} \mu_{z}'}{\mu_{z}} + \gamma_{1}^{1} \gamma_{2} - \frac{\mu_{x}' p}{k \mu_{z}} \right] \right\} \\ \Delta B_{1}' &= i \frac{kd}{2} \left\{ (A+B) [-\gamma_{1}^{2} - \frac{\mu_{x} p}{\mu_{z} k}] + (A-B) \right. \\ &\times [\frac{\gamma_{1} \mu_{z}' \gamma_{2}'^{1}}{\mu_{z}}] + D \left[\frac{\gamma_{2}^{2} \mu_{z}'}{\mu_{z}} - \frac{\gamma_{2}'^{1} \gamma_{2} \mu_{z}'}{\mu_{z}} + \frac{\mu_{x}' p}{k \mu_{z}} \right] \right\} \\ \Delta D_{1}' &= i \frac{kd}{2} \left\{ (A+B) [-\gamma_{1}^{2} - \frac{\mu_{x} p}{\mu_{z} k}] + (A-B) \right. \\ &\times [-\gamma_{1} \gamma_{1}'^{1}] + D \left[\frac{\gamma_{2}^{2} \mu_{z}'}{\mu_{z}} + \gamma_{1}'^{1} \gamma_{2} + \frac{\mu_{x}' p}{k \mu_{z}} \right] \right\} \end{split}$$

$$B'_{n} - D'_{n} = i\zeta_{n} [Aq - Bq - Dr] \qquad ()$$

$$B'_{n}\mu_{z}q'_{n} + D'_{n}\mu'_{z}r'_{n} = i\zeta_{-n} \{(A + B)[np\mu_{x}] + \frac{\omega\sin\theta}{\beta_{1}} + q^{2}\mu_{z}] - D[np\mu'_{x}\frac{\omega\sin\theta}{\beta_{1}} + r^{2}\mu'_{z}] \} \qquad ()$$

.....

$$B = A \frac{\mu_z q - \mu'_z r}{\mu_z q + \mu'_z r} \quad D = A \frac{2\mu_z q}{\mu_z q + \mu'_z r} \quad ()$$

:

•

$$B_n = \frac{\Delta B_n}{\Delta_n}, D_n = \frac{\Delta D_n}{\Delta_n}, B'_n = \frac{\Delta B'_n}{\Delta'_n}, D'_n = \frac{\Delta D'_n}{\Delta'_n} \qquad ()$$

$$\begin{split} \Delta_{n} &= \gamma_{1}^{n} + \frac{\mu_{z}' \gamma_{2}^{n}}{\mu_{z}}, \quad \Delta_{n}' = \gamma_{1}'^{n} + \frac{\mu_{z}' \gamma_{2}'^{n}}{\mu_{z}} \\ \Delta B_{n} &= i \zeta_{-n} k \left\{ (A + B) [-\gamma_{1}^{2} + \frac{\mu_{x} n p}{\mu_{z} k}] + (A - B) \right\} \\ &\times [\frac{\gamma_{1} \mu_{z}' \gamma_{2}^{n}}{\mu_{z}}] + D [\frac{\gamma_{2}^{2} \mu_{z}'}{\mu_{z}} - \frac{\gamma_{2}^{n} \gamma_{2} \mu_{z}'}{\mu_{z}} - \frac{\mu_{x}' n p}{k \mu_{z}}] \\ \Delta D_{n} &= i \zeta_{-n} k \left\{ (A + B) [-\gamma_{1}^{2} + \frac{\mu_{x} n p}{\mu_{z} k}] + (A - B) \right\} \\ &\times [-\gamma_{1} \gamma_{1}^{n}] + D [\frac{\gamma_{2}^{2n} \mu_{z}'}{\mu_{z}} + \gamma_{1}^{n} \gamma_{2} - \frac{\mu_{x}' n p}{k \mu_{z}}] \\ \Delta B_{n}' &= i \zeta_{n} k \left\{ (A + B) [-\gamma_{1}^{2} - \frac{\mu_{x} n p}{\mu_{z} k}] + (A - B) \right\} \\ &\times [\frac{\gamma_{1} \mu_{z}' \gamma_{2}'^{n}}{\mu_{z}}] + D [\frac{\gamma_{2}^{2} \mu_{z}'}{\mu_{z}} - \frac{\gamma_{2}'^{n} \gamma_{2} \mu_{z}'}{\mu_{z}} + \frac{\mu_{x}' n p}{k \mu_{z}}] \\ \Delta D_{n}' &= i \zeta_{n} k \left\{ (A + B) [-\gamma_{1}^{2} - \frac{\mu_{x} n p}{\mu_{z} k}] + (A - B) \right\} \\ &\times [-\gamma_{1} \gamma_{1}'^{n}] + D [\frac{\gamma_{2}^{2} \mu_{z}'}{\mu_{z}} + \gamma_{1}'^{n} \gamma_{2} + \frac{\mu_{x}' n p}{k \mu_{z}}] \\ \end{split}$$

 $\gamma_1 = \sqrt{\mu_x \left(1/\sin^2 \theta - 1 \right)/\mu_z},$ $\gamma_2 = \sqrt{\mu'_x \left(1/\sin^2 \delta - 1 \right)/\mu'_z},$

$$\Delta B_{2} = i \frac{k(c_{2} + is_{2})}{2} \left\{ (A + B)[-\gamma_{1}^{2} + \frac{2\mu_{x}p}{\mu_{z}k}] + (A - B)[\frac{\gamma_{1}\mu_{z}'\gamma_{2}^{2}}{\mu_{z}}] + D[\frac{\gamma_{2}^{2}\mu_{z}'}{\mu_{z}} - \frac{\gamma_{2}^{2}\gamma_{2}\mu_{z}'}{\mu_{z}} - \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$\Delta D_{2} = i \frac{k(c_{2} + is_{2})}{2} \left\{ (A + B)[-\gamma_{1}^{2} + \frac{2\mu_{x}p}{\mu_{z}k}] + (A - B)[-\gamma_{1}\gamma_{1}^{2}] + D[\frac{(\gamma_{2}^{2})^{2}\mu_{z}'}{\mu_{z}} + \gamma_{1}^{2}\gamma_{2} - \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$\Delta B_{2}' = i \frac{k(c_{2} - is_{2})}{2} \left\{ (A + B)[-\gamma_{1}^{2} - \frac{2\mu_{x}p}{\mu_{z}k}] + (A - B)[\frac{\gamma_{1}\mu_{z}'\gamma_{2}'}{\mu_{z}}] + D[\frac{\gamma_{2}^{2}\mu_{z}'}{\mu_{z}} - \frac{\gamma_{2}'^{2}\gamma_{2}\mu_{z}'}{\mu_{z}} + \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$\Delta D_{2}' = i \frac{k(c_{2} - is_{2})}{2} \left\{ (A + B)[-\gamma_{1}^{2} - \frac{2\mu_{x}p}{\mu_{z}}] + (A - B)[-\gamma_{1}\gamma_{1}'^{2}] + D[\frac{\gamma_{2}^{2}\mu_{z}'}{\mu_{z}} + \gamma_{1}'^{2}\gamma_{2} + \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$\Delta D_{2}' = i \frac{k(c_{2} - is_{2})}{2} \left\{ (A + B)[-\gamma_{1}^{2} - \frac{2\mu_{x}p}{\mu_{z}}] + (A - B)[-\gamma_{1}\gamma_{1}'^{2}] + D[\frac{\gamma_{2}^{2}\mu_{z}'}{\mu_{z}} + \gamma_{1}'^{2}\gamma_{2} + \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$(A - B)[-\gamma_{1}\gamma_{1}'^{2}] + D[\frac{\gamma_{2}^{2}\mu_{z}'}{\mu_{z}} + \gamma_{1}'^{2}\gamma_{2} + \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$(A - B)[-\gamma_{1}\gamma_{1}'^{2}] + D[\frac{\gamma_{2}^{2}\mu_{z}'}{\mu_{z}} + \gamma_{1}'^{2}\gamma_{2} + \frac{2\mu_{x}'p}{k\mu_{z}}] \right\}$$

$$\zeta = d \cos(px) + c_2 \cos(2px) + s_2 \sin(2px) + c_3 \cos(3px) + s_3 \sin(3px)$$

$$n = 3 \qquad \zeta_{\pm 3} = (c_3 \mp is_3)/2$$

$$D'_3 \quad B'_3 \quad D_3 \quad B_3 \qquad n = 2$$

$$n = 2 \qquad ()$$

:

:

$$\rho_{1} = 2.2 \times 10^{3} kg / m^{3} : M_{1} - \mu_{z} = 2.68 \times 10^{9} N / m^{2} - \mu_{x} = 5.68 \times 10^{9} N / m^{2} - \mu_{z} = 2.9 \times 10^{3} kg / m^{3} : M_{2} - \mu_{z}' = 2.95 \times 10^{9} N / m^{2} - \mu_{z}' = 4.88 \times 10^{9} N / m^{2}$$

$$\mu_x = \mu_z = \mu_1$$

$$\mu'_x = \mu'_z = \mu_2$$

$$\vdots$$

$$(\theta - \delta - 0) \qquad (\cos \theta - \cos \theta' \quad (B - B'))$$

$$\begin{cases} \partial = \partial = 0 \\ \zeta_1 = \zeta_{-1} = d/2 \end{cases} \Rightarrow \begin{cases} \cos \delta_1 - \cos \delta_1 \\ \cos \delta_1 = \cos \delta_1' \end{cases} \Rightarrow \begin{cases} B_1 - B_1 \\ D_1 = D_1' \\ D_1 = D_1' \end{cases}$$
$$B_1 - D_1 = i \zeta_1 \omega \left[\frac{A - B}{\beta_1} - \frac{D}{\beta_2} \right],$$
$$B_1 \mu_1 q_1 + D_1 \mu_2 r_1 = i \zeta_1 \omega^2 \left\{ -\mu_1 \frac{A + B}{\beta_1^2} + \mu_2 \frac{D}{\beta_2^2} \right\}$$
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$D_1 \quad B_1 \qquad ()$$

$$\exp(\pm iq\zeta) = 1 \pm iq\zeta - iq^2 \frac{\zeta^2}{2!}$$

•

:

•

-

$$\zeta = d \cos(px) + c_2 \cos(2px) + s_2 \sin(2px) ()$$

$$\zeta_2 = (c_2 - is_2)/2 \quad \zeta_1 = \zeta_{-1} = d/2$$

$$n = 2 \qquad . \quad \zeta_{-2} = (c_2 + is_2)/2$$

$$D'_{2} \quad D'_{1} \quad B'_{2} \quad B'_{1} \quad D_{2} \quad D_{1} \quad B_{2} \quad B_{1}$$

$$() \qquad D'_{1} \quad B'_{1} \quad D_{1} \quad B_{1}$$

$$\vdots$$

$$B_{2} = \frac{\Delta B_{2}}{\Delta_{2}}, \quad D_{2} = \frac{\Delta D_{2}}{\Delta_{2}}, \quad B'_{2} = \frac{\Delta B'_{2}}{\Delta'_{2}}, \quad D'_{2} = \frac{\Delta D'_{2}}{\Delta'_{2}} \quad ()$$

$$\Delta_{2} = \gamma_{1}^{2} + \frac{\mu'_{z} \gamma_{2}^{2}}{\mu_{z}} \qquad \Delta'_{2} = \gamma_{1}^{\prime 2} + \frac{\mu'_{z} \gamma_{2}^{\prime 2}}{\mu_{z}}$$

()
$$\begin{aligned} \theta &= 3^{0} \\ \theta &= 70^{0} \\ n &= 2, 3 \end{aligned}$$

0.001
$$pd$$
 $d\omega/\beta_1 = 0.1$
 $d\omega/\beta_1$. 0.0001

.....

n = 1, 2, 3

جدول ۱: مقایسه مقادیر B_1 و D_1 حاصل از تقریب اول با نتایج به دست آمده توسط آسانو از تقریب دوم برای دو نیم فضای ایزوتروپ با فصل مشترک ناهموار. B_{1A} و D_{1A} و نشان دهنده مقادیر به دست آمده توسط آسانو (۱۹۶۰) هستند. مشخصه های مورد نیاز برای محاسبه این ضرایب همان مشخصه های بش فرض د. مقاله آسانه می باشند.

. 6 7	, , .	0-7-0-20	
<i>B</i> ₁	B_{1A}	D_1	$D_{_{1A}}$
0.043	0.042	0.017	0.019
0.043	0.042	0.018	0.019
0.043	0.041	0.018	0.019
0.041	0.039	0.020	0.022
0.039	0.036	0.021	0.025
0.034	0.020	0.026	0.040
0.027	0.031	0.036	0.036
0.038	0.040	0.031	0.032
0.046	0.046	0.025	0.026
0.051	0.051	0.020	0.021
0.058	0.057	0.009	0.010
0.059	0.059	0.005	0.007
0.061	0.060	0.001	0.003
0.061	0.061	0.004	0.002
0.062	0.061	0.011	0.010
0.054	0.054	0.012	0.011
0.052	0.051	0.013	0.012
0.049	0.049	0.014	0.014
0.049	0.049	0.015	0.014
0.048	0.048	0.015	0.014
0.048	0.048	0.015	0.014
0.048	0.048	0.015	0.015
0.046	0.046	0.016	0.016
0.045	0.045	0.017	0.017
0.042	0.042	0.019	0.019
0.041	0.041	0.019	0.019

$$\theta = 90^{\circ}$$

 $\theta = 90^{\circ}$

.

В

D

 θ

() . $D_1' \quad B_1' \quad D_1 \quad B_1$

SH

شکل ۱۵: تغییرات دامنههای بازتاب و شکست پراشی حقیقی و موهومی، $D_{D,D}$ بر حسب زاویه تابش (pd = 0.01).

مراجع

- 1 Ewing, W. M., Jardetsky, W. S. and Press, F. (1957). *Elastic Waves in Layered Media*, McGraw-Hill Pub. Co., New York.
- 2 Aki, K. and Richards, P. G. (2002). Quantitative Seismology, 2nd. Ed. University Science Book, New York,
- 3 Sheriff, R. E. and Geldart, P. L. (1995). Exploration Seismology. Cambridge University Press, Cambridge.
- 4 Lay, T. and Wallace, T. C. (1995). *Modern Global Seismology*, International Geophysics Series, Academic Press, New York.
- 5 Udias, A. (1999). Principles of Seismology, Cambridge University Press, Cambridge.

نتيجه گيري

- 6 Chaudhary, S., Kaushik, V. P. and Tomar, S. K. (2004), "Transmission of plane SH-wave through a self-reinforced elastic slab sandwiched between two anisotropic inhomogeneous elastic solid half-spaces." *Int. J. Applied Mech. & Engng*, Vol. 9, No. 1, PP. 131-146.
- 7 Tomar, S. K. and Garg, M. (2005), "Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces." *Int. J. Engineering Science*, Vol. 43, No. 1-2, PP. 139-169.
- 8 Singh, J. and Tomar, S. K. (2006), "Reflection and transmission of transverse waves at a plane interface between two different porous elastic solid half-spaces." *Applied Mathematics and Computation*, Vol. 176, No. 1, PP. 364-378.
- 9 Adams, W. M. and Ghung-Po, C. (1964). "Wave propagation phenomena at an irregular infinite interface: Part I: Theory." *Bulletin of the Seismological Society of America*, Vol. 54, No. 6, Part B, PP. 2209-2222.
- 10 Gupta, S. (1987). "Reflection and transmission of SH wave in laterally and vertically heterogeneous media at an irregular boundary." *Geophysical Transactions,* Vol. 33, No. 2, PP. 89-111.
- 11 Rayleigh, L. (1893). "On the reflection of sound or light from a corrugated surface." *Rep. Brit. Assoc. Adv. Sci.*, PP. 690-691.
- 12 Asano, S. (1960). "Reflection and refraction of elastic waves at a corrugated boundary surface: Part I: The case of incidence of SH-wave." *Bulletin of the Earthquake Research Institute,* Vol. 38, No. 2, PP. 177–197.

- 13 Asano, S. (1966). "Reflection and refraction of elastic waves at a corrugated interface." *Bulletin of the Seismological Society of America*, Vol. 56, No. 1, PP. 201–221.
- 14 Asano, S. (1961). "Reflection and refraction of elastic waves at a corrugated boundary surface: Part II." *Bulletin of the Earthquake Research Institute*, Vol. 39, No. 3, PP. 367–466.
- 15 Abubakar, I. (1962). "Scattering of plane elastic waves at rough surfaces." *Proceedings of the Cambridge Philosophical Society*, Vol. 58, PP. 136–157.
- 16 Dunkin, J. W. and Eringen, A. C. (1962). "Reflection of elastic waves from the wavy boundary of a halfspace." *Proceedings of the 4th US National Congress of Applied Mechanics*, ASME Publication, PP. 143–160.
- 17 Rice, O. (1951). "Reflection of electromagnetic waves from slightly rough surfaces." *Communication of Pure and Applied Mathematics*, Vol. 4, PP. 351–378.
- 18 Tomar, S. K. and Saini, S. L. (1997). "Reflection and refraction of SH-waves at a corrugated interface between two-dimensional transversely isotropic half spaces." *Journal of Physics of the Earth*, Vol. 45, PP. 347–362.
- 19 Tomar, S. K., Kumar, R. and Chopra, A. (2000). "Reflection and refraction of SH-waves at a corrugated interface between transversely isotropic and visco-elastic solid half spaces." *Acta Geophysica Polonica*, Vol. 50, PP. 231–249.
- 20 Lekhnitskii, S. G. (1963). Theory of Elasticity of an Anisotropic Body, Holden-Day, San Francisco.
- 21 Loloi, M. (2000). "Boundary integral equation solution of three-dimensional elastostatic problems in transversely isotropic solids using closed-form displacement fundamental solutions." *Int. J. Numer. Meth. Engng*, Vol. 48, PP. 823-842.

واژه های انگلیسی به ترتیب استفاده درمتن

1 - Microstrech Solid