* - - -

(تاریخ دریافت ۸۵/۷/۲۲ ، تاریخ دریافت روایت اصلاح شده ۸۶/۲/۱۵ ، تاریخ تصویب ۸۶/۳/۱۹)

Daubechies

GMRES

- GMRES - - - :

[]FMM []Panel Clustering

Coifman ،Beylkin و Coifman ،Beylkin [] Panel .

FMM Clustering

Frontal Sky Line

*

 $t_{i} = \frac{-1}{4\pi(1-\nu)r} \left\{ (1-2\nu)\delta_{ij} + 2r_{,i}r_{,j} \right\}_{i,n}$ $-[(1-2\nu)(r_{,j}n_{,i}-r_{,i}n_{,j}]]$ () $egin{array}{ccc} {
m i} & {
m t_i} \ {oldsymbol{\delta}_{ij}} & {
m n_i} & {
m n} \end{array}$ [] Р Q $u_i(P) + \int_{\Gamma} T_{ij}(P,Q) u_j(Q) d\Gamma(Q) =$ $\int_{\Gamma} U_{ij}(P,Q) t_j(Q) d\Gamma(Q)$ () $T_{ij} \quad U_{ij}$ () : : $u_{i,jj} + (\frac{1}{1-2\upsilon^*})u_{j,jj} = -\frac{f_i}{u}$ () i $f_i \quad u_i$. υ^{*} μ : : G $v^* = \frac{v}{1+v}$ () х () $\begin{bmatrix} c_{xx}(P) & c_{xy}(P) \\ c_{yx}(P) & c_{yy}(P) \end{bmatrix} \begin{bmatrix} u_x(P) \\ u_y(P) \end{bmatrix} + \sum_{m=1}^M \sum_{c=1}^3 \left(\int_{\Gamma_m} \begin{bmatrix} T_{xx}(P,Q) & T_{xy}(P,Q) \\ T_{yx}(P,Q) & T_{yy}(P,Q) \end{bmatrix} \end{bmatrix}$. υ $N_{c}(\xi)J(\xi)d\xi \begin{bmatrix} u_{x}(Q) \\ u_{y}(Q) \end{bmatrix} = \sum_{m=1}^{M} \sum_{c=1}^{3} \left(\int_{\Gamma_{m}} \begin{bmatrix} U_{xx}(P,Q) & U_{xy}(P,Q) \\ U_{yx}(P,Q) & U_{yy}(P,Q) \end{bmatrix} \right)$. $N_{c}(\xi)J(\xi)d\xi \int \begin{bmatrix} t_{x}(Q) \\ t_{y}(Q) \end{bmatrix}$ $\begin{bmatrix} & & \\ &$ () () () М $N_c(\xi)(c=1,2,3)$ () C_{ij}

()
$$c_{ij} = \frac{1}{2} \delta_{ij} \quad ; \ i,j = x,y \tag{)}$$

$$B A \qquad \begin{bmatrix} I \\ B \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} I \\ B \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} I \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{pmatrix} I \\ B \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix} = (s[B]) \cdot (\frac{1}{s}[t]) \qquad \qquad \begin{bmatrix} I \\ I \end{bmatrix} = (s[B]) \cdot (\frac{1}{s}[t]) \qquad \qquad \begin{bmatrix} I \\ I \end{bmatrix} = \begin{pmatrix} I \\ I \end{pmatrix} = \begin{pmatrix} I \\$$

()
$$P \neq Q$$
 Q P
 $T_{ij} \quad U_{ij}$

$$\begin{bmatrix} A^* \end{bmatrix}$$

$$GMRES$$

$$P = Q$$

$$P = Q$$

$$A$$

$$A$$

(CPV)

. Daubechies

.[] . • . .

. ([]) O(N.LOG(N)) .

. : +∞

$$(T^{FT})(\omega) = \int_{-\infty} f(t) \cdot e^{-i\omega t} dt$$

$$()$$

$$(T^{WP})(\omega,\tau) = \int_{-\infty} f(t) \cdot g(t-\tau) \cdot e^{-t\omega\tau} dt$$

$$(T^{WT})(a,b) = \int_{-\infty}^{+\infty} f(t) \cdot \Psi(\frac{t-b}{a}) \cdot dt$$

$$()$$

$$T^{WT} T^{WFT} T^{FT}$$

$$g(t-\tau) \cdot f(t)$$

$$g(t- au)$$
 .

 $\left[A^*\right] \cdot \left[x\right] = \left[c\right]$

()

()

()

:

$$\begin{bmatrix} c \end{bmatrix} & \begin{bmatrix} c \end{bmatrix} & \begin{bmatrix} x \end{bmatrix} \\ a^{w} & {}^{1}(FWT) \\ a^{w} & = W.a \\ & & & \\ & &$$

 A^*

•

()

.

:

x

GMRES

.

_

•

.

.

.

.

.

.

.

)	
	(

.

	•			L	:	
h	DISP.	STR.(XX)	STR.(YY)	STR.(XY)	STR.(ZZ)	VON-MISES
1.E-04	2.45E-04	1.51E-02	3.43E-04	1.06E-02	0.00E+00	2.23E-03
5.E-04	4.52E-03	7.22E-02	4.52E-03	3.18E-02	0.00E+00	8.67E-03
1.E-03	1.68E-02	1.89E-01	1.49E-02	9.11E-02	0.00E+00	2.24E-02

.

.

	•			L	:	
h	DISP.	STR.(XX)	STR.(YY)	STR.(XY)	STR.(ZZ)	VON-MISES
1.E-04	2.16E-03	2.92E-03	2.11E-03	2.70E-03	2.42E-03	2.18E-03
5.E-04	5.76E-03	1.29E-02	7.01E-03	9.44E-03	7.46E-03	7.48E-03
1.E-03	3.91E-02	4.94E-02	2.72E-02	3.75E-02	3.62E-02	2.72E-02

				L	:	
h	DISP.	STR.(XX)	STR.(YY)	STR.(XY)	STR.(ZZ)	VON-MISES
1.E-04	5.90E-03	3.97E-02	1.31E-01	4.69E-02	0.00E+00	5.94E-02
5.E-04	9.81E-02	1.93E-01	6.63E-01	3.49E-01	0.00E+00	3.21E-01
1.E-03	2.68E-01	2.12E-01	7.12E-01	3.98E-01	0.00E+00	3.33E-01

()

.....

.

()

.

							-	
Droblom	DOF	NNZ			Compression Ratio			
FIODIeIII		th=0.0001	th=0.0005	th=0.001	th=0.0001	th=0.0005	th=0.001	
Example 1	128	13,200	10,395	9,111	1.24	1.58	1.80	
	256	40,976	31,187	25,996	1.60	2.10	2.52	
	512	128,723	90,581	70,152	2.04	2.89	3.74	
	1024	413,309	253,594	172,154	2.54	4.13	6.09	
Example 2	256	42,391	33,160	28,298	1.54	1.98	2.32	
	512	134,037	100,126	76,704	1.96	2.62	3.42	
	1024	457,527	300,799	180,426	2.29	3.48	5.81	
Example 3	1024	631,876	426,476	320,185	1.66	2.46	3.27	
	2048	1,903,013	1,120,267	772,211	2.20	3.74	5.43	

:

()

Problem	DOF	Permuted W	avelet BEM	Standard BEM		
Tioblein	DOI	Total Time	T_1	Total Time	T ₁	
Example 1	128	0.42	0.19	0.28	0.22	
	256	1.93	1.31	1.83	1.61	
	512	12.57	9.03	13.34	12.80	
	1024	89.21	68.17	103.67	101.80	
Example 2	256	1.97	1.34	1.88	1.66	
	512	12.41	8.88	13.25	12.69	
	1024	86.99	64.96	101.31	99.31	
Example 3	1024	88.01	65.83	101.80	99.98	
	2048	715.94	574.37	876.63	869.64	

- 1 Hackbush, W. and Nowak, Z. P. (1989). On the Fast Matrix Multiplication in the Boundary Element Method by Panel Clustering, Numer. Math., Vol. 54, PP. 463-491.
- 2 Greengard, L. and Rokhlin, V. (1987). "A fast algorithm for particle simulations." *J. comp. phy.*, Vol. 73, PP. 325-348.
- 3 Beylkin, G., Coifman, R. and Rokhlin, V. (1991). "Fast wavelet transforms and numerical algorithms I." *comm. Pure. Appl. Math.*, Vol. 44, PP. 141-183.
- 4 Dahmen, W., Klemmann, B., Prossdorf, S. and Schneider, R. (1996). Multiscale methods for the solution of the Helmholtz and Laplace equations, in Boundary Element Topics, Wlfgang L.Wendland ed., Springer-Verlag.
- 5 Lage, C. and Schwab, C. (1990). "Wavelet Galerkin algorithms for boundary integral equations." *SIAM J. Sci, Comp,* Vol. 20, PP. 195-222.
- 6 Rokhlin, V. (1983). "Rapid solution of integral equations of classical potential theory." J. Comp. Phys, Vol. 60, PP. 187-207.
- 7 Bucher, H. F., Wrobel, L. C., Mansur, W. J. and Magulta, C. (2004). "On the block wavelet transform applied to the boundary element method." *Engng. Anal. Bound. Elem,* Vol.28, PP. 571-581.
- 8 Bucher, H. F., Wrobel, L. C., Mansur, W. J. and Magulta, C. (2003). "Fast solution of problems with multiple load cases by using wavelet compressed boundary element matrices." *Commun. Numer. Math. Engng.*, Vol.

19, PP. 387-399.

- 9 Gonzalez, P., Cabalaeir, J. C. and Pena, T. F. (2002). "Parallel iterative solvers involving fast wavelet transforms for the solution of BEM systems." *Advanced in Engineering Softwares*, Vol. 33, PP. 417-426.
- 10 Bucher, H. F. and Wrobel, L. C. (2002). "A novel Approach to applying fast wavelet transforms in the boundary element method." *Electronic Journal of Boundary Elements*, Vol. 2, PP. 187-195.
- 11 Chen, K. (1999). "Discrete Wavelet Transforms accelerated sparse preconditioners for dense boundary element systems." *Electronic Transaction Numerical Analysis*, Vol. 8, PP. 138-153.
- 12 Becker, A. A. (1991). The Boundary Element Method in Engineering, McGraw-Hill, London.
- 13 Daubecies, I. (1992). Ten Lectures on wavelets, SIAM, Vol. 61.
- 14 Koro, K. and Abe, K. (2003). "A practical determination strategy of optimal threshold parameter for matrix compression in wavelet BEM." *Int. J. Numer. Meth. Engng*, Vol. 57, PP.169-191.
- 15 Saad, Y. and Schultz, M. H. (1986). "GMRES: a generalized minimal residual method for solving nonsymmetric linear systems." *SIAM.J. Sci. Statist. Comput.*, Vol. 7, PP. 856-869.
- 16 Williams, J. R. and Amaratunga, K. (1994). "Introduction to the wavelets in the engineering." *International Journal for Numerical Methods in Engineering*, Vol. 37, PP.2365-2388.
- 17 Amaratunga, K. (2000). "A wavelet based approach for compressing kernel data in large-scale simulations for 3D integral problems." *Computing in Science and Engineering*, Vol. 1, PP. 34-45.
- 18 Barra, LPS, Coutinho, ALGA, Mansur, W. J. and Telles, JCR. (1994). "Iterative solution of BEM equations by GMRES." *Computers and Structures*, Vol. 111, PP. 335-355.
- 19 Mansur, W. J., Araujo, F. C. and Malgnini, JEB. (1992). "Solution of BEM systems of equations via iterative techniques." *International Journal for Numerical Methods in Engineering*, Vol. 33, PP. 1823-1841.
- 20 Bond, D. M. and Vavasis, S. A. (1994). "Fast wavelet transforms for matrices arising from boundary element methods." *Computer science research report, TR-174*, Cornell University.
- 21 Ebrahimnejad, L. (2007). *Applying wavelets to improve the boundary element method*, Ph.D Dissertation, School of Civil Engineering, University of Tehran.
- 1 Fast Wavelet Transform
- 2 Compressed Coordinate