چکیده

در این مقاله مزالبدی خدمه در راه آهن و حل ابتکاری با الگو سازی محدودیت ها

 محمد مهدی سهری

استادیار بخش مهندسی صنایع - دانشگاه فنی و مهندسی - دانشگاه تربیت مدرس

عباس حاجی فتحی‌ها

دانشجوی دکتری مهندسی صنایع - دانشگاه فنی و مهندسی - دانشگاه تربیت مدرس

تاریخ دریافت ۱۴۰۳/۸/۲۰ ، تاریخ نپذیرش ۱۴۰۳/۸/۲۰

واژه‌کلیه: مزالبدی خدمه، مدال سازی ریاضی، راه‌آهن، روش ابتكاری، الگو سازی منطقی محدودیت‌ها

شرح مساله و تعاریف

تهمینی زمان انجام خدمات توسط کارکنان یا مزالبدی خدمه در مدیریت شرکت‌های بزرگ حمل و نقل

مانند راه‌آهن، اتوبوس‌رانی و خطوط هوایی به‌خاطر افزایش قطعاتی، های برترین است که بین مراحل مزالبدی

وسایل نقلیه و جدول‌نویس کاری خدمه قرار دارد. ۱۱ و ۱۲.

شرح جابجایی مزالبدی خدمه در برنامه‌ریزی حمل و نقل

معدل حادثه است که در این مقاله نیز مفاهمی و تعاریف شرکت‌دهده در همین مرجع مورد استفاده

قرار گرفته است.

نخست، به یادگیری از تعاریف و اصطلاحات

برنامه‌ریزی شده در نظر گرفته که در یک دوره مزالبدی

می‌باشد. زمان‌بندی حکایت از اینکه با محاسبه این ارائه

قطر علامتاتی خدمه در انتهای خدمه می‌باشد. این ارائه

خدمه خدمه به نوع اموریت آنها از ایستگاه‌های

در هر ایستگاه می‌باشد. برای توضیح بیشتر در مورد مسأله زمان‌بندی حرکت قطارها و حداکثر کردن توقیف‌هایی ناشی از لایحه قطارها بر مبنای ساختار زمان‌بندی می‌توان به مبحث زیر اشاره نمود.

- زمان‌بندی اطلاعات ورودی. برای زمان‌بندی خروج محصول می‌گوییم. شکل‌ها (۲) را با در نظر گرفتن فاصله تریخی می‌توان به صورت شکل (۲) نشان داد که این شکل توضیح مسأله زمان‌بندی خروج می‌دهد.

هر خط مسیر تحت عنوان راهنمایی می‌باشد. هر ایستگاه طراحی جدول زمان‌بندی حرکت قطارها برای مسیری که می‌خواهیم تا دو دسته تقسیم می‌باشد. این دو دسته می‌تواند به دو دسته تقسیم شود:

- دسته اول: برای حرکت قطارها که در زمان‌بندی خروج می‌تواند به دو دسته تقسیم شود.
- دسته دوم: برای حرکت کارکنان است. این دسته می‌تواند به دو دسته تقسیم شود:

1. دسته اول: برای حرکت کارکنان است. این دسته می‌تواند به دو دسته تقسیم شود.

CSP مسأله زمان‌بندی خروج که به اختصار "پروسه سوال حل مسأله زمان‌بندی خروج" نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود. مسأله زمان‌بندی خروج که به اختصار CSP نامیده می‌شود.
شکل ۱: نمایش یک مأموریت فرضی در زمان بندی کارهای راه آهن.

شکل ۲: نمودار مسافت - زمان بین دو ایستگاه S_i و S_k.

S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9.
رویکرد های متفاوتی برای حل مسائل زمان‌بندی

در مقایسه مدل‌های زمان‌بندی همبسته، بخش بریش، و شاخه و لحیج، گرفته است که در مقابل مدل‌های سه‌گانه شاخه و بخش بریش و هم‌بستگی و حضور بریش بهترین مدل‌ها می‌باشند. در حل مسائل عمل کردن در مقایسه با مدل‌های گردش و براز دارای فواید قطعی برای زمان‌بندی زمان‌بندی در نظر گرفته تا 10 استفا مساله زمان‌بندی خدمه و سپس با نسبت به این زمان‌بندی خدمه یک حداکثر برای مساله برای کردن و سپس با روش بریش و کردن به حل مساله استفاده می‌شود.
کتابرانه و مکاران [16] مساله زمان بندی خدمه و توت کایری را آبست طرح کرده و با ابزاری که برای راه‌های ایتالیا وجود دارد مساله را به صورت برنامه‌ریزی مفصل دیده است. سپس با ساده‌سازی این مدل و حل آن یک حین بازی برای مساله پیدا کرده و بر اساس آن یک روش ابتکاری جستجو برای تهیه را کار گرفته‌اند. روش ایتالیایی شرایط خصوصی به صورت در مساله‌ای که راه‌های ایتالیا به صورت رسیده، هزینه رتبه نیست، شرکت کنندگان شده است.

چو و چنو [16] مساله زمان بندی خدمه را برای صرفه جویی در خطوط برنامه‌سازی هنگ کنگ در نظر گرفته و مدعی شدهاند که مساله‌ی این مساله‌ای مسیر برای خدمه که بهتر از روش‌های دستی بکار گرفته شده قبلاً در خطوط برنامه‌سازی هنگ کنگ است. بررسی این موضوع با توجه به خروج صورت مناسب است. در این مطالعه، مساله را به صورت برنامه‌ریزی مفصل دیده است. سپس با ساده‌سازی آن یک روش ابتکاری جستجو برای تهیه را کار گرفته‌اند. روش ایتالیایی شرایط خصوصی به صورت در مساله‌ای که راه‌های ایتالیا به صورت رسیده، هزینه رتبه نیست، شرکت کنندگان شده است.

تعریف مسائلی به صورت یک شبه چند جدول مساله زمان‌بندی خدمه آن را به صورت یک شبه ساختاری ایم که این شبه‌ساختار مدل سازی و روش خیال خواهد بود که در این مقاله به آن یک برنامه‌سازی در شکل اکثر نقاط شرایط هنگ کنگ بستگی داشته و این نظریه را شکل‌گیری می‌کند. به این شکل گرفته شده، شرایط گذاری گردیده که می‌توان به‌طور کامل به بیان کرده شرایط خواهد شد. به‌طور کلی در شکل اکثر نقاط شرایط هنگ کنگ بستگی داشته و این نظریه را شکل‌گیری می‌کند.

در این مقاله، مساله را به صورت برنامه‌ریزی مفصل دیده است. سپس با ساده‌سازی آن یک روش ابتکاری جستجو برای تهیه را کار گرفته‌اند. روش ایتالیایی شرایط خصوصی به صورت در مساله‌ای که راه‌های ایتالیا به صورت رسیده، هزینه رتبه نیست، شرکت کنندگان شده است.

در این مقاله، مساله را به صورت برنامه‌ریزی مفصل دیده است. سپس با ساده‌سازی آن یک روش ابتکاری جستجو برای تهیه را کار گرفته‌اند. روش ایتالیایی شرایط خصوصی به صورت در مساله‌ای که راه‌های ایتالیا به صورت رسیده، هزینه رتبه نیست، شرکت کنندگان شده است.

در این مقاله، مساله را به صورت برنامه‌ریزی مفصل دیده است. سپس با ساده‌سازی آن یک روش ابتکاری جستجو برای تهیه را کار گرفته‌اند. روش ایتالیایی شرایط خصوصی به صورت در مساله‌ای که راه‌های ایتالیا به صورت رسیده، هزینه رتبه نیست، شرکت کنندگان شده است.
مشخصه‌های سبیعه‌های وظیفه از برناوه حرکت و سایر نقشه‌های به دست می‌آید و جزء داده‌های ورودی هستند و اگر شماره ایستگاه و همچنین هزینه آن سبیعه یا اضافه شود، مشخصه‌های سبیعه وظیفه کاملاً ثابت است.

همان‌طور که مشخصه‌های سبیعه وظیفه می‌باشند، مشخصه مشخصه‌های هیون نیز برای سبیعه‌های انتقال وجود دارد و به لازم است محاسبه شوند. در صورتی که انتقال بین ایستگاه‌های مختلف، یک سبیعه انتقال وجود دارد، این سبیعه و هزینه‌های در نیت انتقال و یک نیز برای انتقال بین یک سبیعه تعریف می‌شوند. در نتیجه این که این سبیعه وظیفه در شکل (1) (i, l) برای انتقال (i, l) سبیعه وروتایی جهت مانند حالت برای سبیعه

\[ST_{ij} = ET_{ij} \]

(3)

اگر سبیعه وظیفه مناسب وجود داشته باشد، این سبیعه انتقال از یکی از سبیعه‌ها شروع شده است. در این صورت زمان شروع این سبیعه در شکل (5) به صورت زیر محاسبه می‌شود.

\[ST_{ki} = ST_{ij} - TT_{ki} \]

(4)

شکل ۵: تعریف مشخصه‌های سبیعه‌های انتقال و وظیفه.

زمان ختم هر سبیعه انتقال نیز برای زمان شروع به اضافه زمان انتقال بین دو گره آن سبیعه است.

\[ET_{ij} = ST_{ij} + TT_{ij} \]

(4)

شکل ک نمونه‌ای از شکه ساخته شده برای سبیعه Zm برای خدمه.

سی نامیم این سبیعه‌ها یک به یک نظر سبیعه‌های این‌دای شکه‌ها هستند و اگر تعداد گره‌های N باشد، منظره‌‌ها N+K که برای سبیعه‌ها، این تعریف اجرا کننده ضروری است. در نتیجه این که این سبیعه‌ها، این سبیعه‌ها N+K هستند و با استفاده از این تعریف شده، سبیعه‌های انتقال به‌سایر گره‌ها می‌توانند تعریف شوند. این باقی‌مانده آن است که این‌ها برای سبیعه‌ها وظیفه می‌باشد. این سبیعه انتقال از یکی از سبیعه‌ها شروع شده است. در این صورت زمان شروع این سبیعه در شکل (5) به صورت زیر محاسبه می‌شود.
زمان توقف با انظار در گره های انتهایی هر صورت سویه انتقال نیز بر اساس تقویت زمان شروع سویه وظیفه بعد از سویه انتقال با زمان ختم سویه انتقال است.

\[D_{Tf} = S_{Tm} - E_{Tf} \]

(5)

اگر سویه وظیفه به‌عنوان وجود نداشته باشد به معنی این است که سویه انتقال به گرفتن مناطق ختم می‌شود. تا این زمان انتظار برای صفر خواهد بود و این سویه به‌عنوان انتقال.

حال به چگونگی کاهش سویه‌های انتقال می‌پردازیم.

از ناحیه که ترسیم و حل مسائل، براساس این شیب به‌عنوان تبدیل تعریف زمان‌های انتقال، خاصیت‌های با متغیرهای بازی به‌عنوان خواهد بود، به علت تعریف‌های منطقی که بکار گرفته شد مسائل انتقالات کاهش داشته است. این مسائل به‌عنوان در بررسی شده‌اند.

الف: سویه‌های انتقال برای عقب حذف می‌شود. چون ما ترتیب شماره‌گذاری گره‌ها را به ترتیب وقوع زمانی آنها انجام داده‌ایم، به‌هر سویه انتقال \(i > j \) به‌دست می‌آید.

ب: هر سویه‌های انتقال که از نظر عملیاتی و اجرایی امکان جابجایی خدمه در آن وجود نداشتند باشد، حذف می‌شود.

ج: اگر حد مجاز طول هر مسیر، را اعمال کنیم، هر سویه انتقال \(S_{Tm} \) که این بیش از مقدار حد مسیری، برای حذف بیشتر سویه‌های انتقال \(C_{Tf} \) بیش از این مقدار سویه وظیفه‌ها با مقدار R به‌طور مشابه در نظر گرفته می‌شود.

د: هر سویه انتقال \(i > j \) که زمان ختم این بیش از زمان شروع سویه فاصله بین باشد، به‌معنی می‌شود.

به‌طور مشابه باشد، حذف می‌شود. این سویه‌ها به‌عنوان زمان حالتی که سویه‌های که زمان توافق آنها از زمان \(D_{Tf} \) به‌طور مشابه باشد، حذف می‌شود. این سویه‌ها به‌طور مشابه باشد، حذف می‌شود.

\[a_{ij} = \begin{cases} 1 & \text{در فاصله تقاضا و مسیر گیری زمان المنطقی} \\ 0 & \text{در هر این صورت} \end{cases} \]

رویکرد جدید برای مدل سازی رضایت مسائل زمان‌بندی خدمه به صورت عمومی در اکثر مسائل در قابل یک متغیر مجموعه‌ای با افت‌ارات مجموعه‌ای با شرایط مطرح شده است.

\[(PI): \min \sum_{j=1}^{n} C_j X_j \]

Subject to:

\[AX = e_m \]

\[X_j \in \{0,1\} \quad \forall j = 1, 2, ..., n \]

(6)

(7)

(8)
مقدمه

هر أموریت در همان قرارگاهی که شروع

و جهت، جهت. برنامه‌گیری از حرکت به

عندی در شکلی تعیین شده برای هر فرآوری، یک گره

مطابق با آن از آن‌ها قرار داده شده است.

- در هر أموریت تولید منطقی از سویه‌های وظیفه

و سویه‌ها استقلال باید وجود داشته باشد. یعنی

سویه‌های ورودی و خروجی به هر گره، باید برابر باشند.

اطلاعات ورودی مدل

چند دسته اطلاعات به عنوان اطلاعات ورودی مدل

هستند که بخشی از آن‌ها داده‌های سال‌های بوده و بخشی

دیگر باید از طریق پردازش محاسباتی داده‌ها در مدل

رایانه‌ای آموزی شوند. این اطلاعات عبارتند از:

الف: اطلاعات موضوعی به مزارع بندی حرکت قطع‌ها که

براساس آن شکل تغییر شده ساخته می‌شود. در این

صورت باید هر حرکت تغییر وظیفه ای یک سویه

() به دست خواهد آمد. داده‌های اولیه که در مورد

این وظیفه مشخص هستند عبارتند از: زمان شروع،

زمان ختم، زمان انجام فعالیت،

زمان انتظار، و همچنین استکان شروع و ختم

آن سویه.

ب: سویه‌های انقلاب شدنی که تحت ساختن آن‌ها قبلاً

تغییر یافته‌اند، بخشی از سویه‌ها نیز دارای مشخصه‌های وظیفه

های وظیفه ای هستند که مقدار مشخصه‌های آن‌ها از

طریق اطلاعات سویه‌های وظیفه ای به‌ترین که در

بخش تعیین مسأله به صورت یک شکل بکار می‌آید مشخص می‌شوند.

ج: اطلاعات مادی‌های همان وظیفه انتقال بین

ایستگاه‌های مختلف در صورت عملی بودن انقلال نیز

در تابع هدف استفاده می‌شوند. از اطلاعات زمان آن

برای محاسبه لکان باید بودان انتقال در ساختن شکله

و از هزینه انقلال.

برای لحاظ در تابع هدف بوده.

م: نیروی دارای هزینه ای مانند هر بار سوار شدن خود

به قطار یا تعیین فاصله در ایستگاه ارام،

هزینه اقامت در هر ایستگاه

قرنط ماموریت، یک ماموریت، CO.

د: سایر داده‌های هزینه ای مانند هر بار سوار شدن خود

به قطار یا تعیین فاصله در ایستگاه ارام،

هزینه اقامت در هر ایستگاه

قرنط ماموریت، یک ماموریت، CO.

مقدار مجاز مدت هر ماموریت، ح. حد

پسین خاصی دارد.

تمام سویه‌های وظیفه باید پوشش داده شوند. به

عبارات دیگر هیچ یک از فعالیت‌های تعیین شده در

زمان‌بندی حرکت قطع‌ها نمی‌توانند انجام نشوند.
کمتر از آن. و هرینه هر واحد زمانی طول ماموریت عرضه، نیز به عوامل ورودی های مساله هستند.

t تعريف و محاسبه بارامترهای مدل ریاضی
برخی اطلاعات ورودی باید برای مدل سازی ریاضی مساله تعیین و تعريف شوند که عبارتند از:
الف: مجموعه \(A_1 \) که شامل کلیه سویه‌های وظیفه‌ای از شکستگی آنها است.

ب: مجموعه \(A_2 \) که شامل کلیه سویه‌های انتقال از شکستگی آنها است.

\[\begin{align*}
 & \text{می‌تواند متغیر \(m \) از مجموعه } \{1, \ldots, l\} \text{ باشد.}
 \\
 & \text{در صورت انتقال } B_{ij} \text{ در مجموعه } A_1 \text{ و } A_2 \text{ است.}
 \\
 & \text{می‌تواند متغیر \(n \) از مجموعه } \{1, \ldots, j\} \text{ باشد.}
 \\
 & \text{در صورت انتقال } A_{ij} \text{ در مجموعه } A_1 \text{ و } A_2 \text{ است.}
 \\
 & \text{می‌تواند متغیر \(k \) از مجموعه } \{1, \ldots, k\} \text{ باشد.}
\end{align*} \]

در صورت بندی مساله زمان‌بندی خدمه‌ای را به عنوان تعریف فوق، مساله زمان‌بندی خدمه را در حالت کلی می‌توان به رابطه ریاضی صورت بندی (قرمز) کرد. همان طور که در بخش تعریف مساله اشاره شد، با استفاده از ساختمان شاید مدل و قواعد منطقی کار گرفته شده. به عوامل تعیین‌شده از عوامل تعیین‌شده انتقال، قابل توجهی از سویه‌های انتقال کاهش می‌یابند. برای آن که فقط متغیر های مربوط به مساله زمان‌بندی در مساله وارد شدن نشوند، می‌تواند از مساله وارد شدن نشوند.

\[\begin{align*}
 & \min Z = \sum_{A_{ij}: k \in B} CT_i X_i^j + \\
 & \sum_{A_{ij}: k \in B} \left(CD_i + CD_j \times T_i \right) X_i^j + \\
 & \sum_{A_{ij}: k \in B} \left(CH_i X_i^j + \sum_{k \in B} \left(CO \times \alpha_k \right) + CM \times \beta_i \right)
\end{align*} \]
subject to:

\[\begin{align*}
 & \text{선یابی در دریافتی با عووان } B_{ij} \text{ در زیربخش با عووان }
 \\
 & \text{در خصوص این مجموعه به رابطه زیر حاکم است.}
\end{align*} \]
متغیرهای موجود در مسأله که

\[\sum_{k=1}^{n} x_k = 1; \forall f \in A_1 \]

\[\sum_{i \in B} t_{i} x_{i} - \alpha_{k} - M(l - x_{i}) - \]

\[TW \leq 0; \forall k \in B \]

\[\sum_{i \in B} t_{i} x_{i} + \beta_{k} + M(l - x_{i}) - \]

\[TW \geq 0; \forall k \in B \]

\[\sum_{i \in B_k} x_{i} = \sum_{i \in B_j} x_{i} = 0; \forall i, j \in N(B_k) \]

\[\sum_{i \in B_k} x_{i} = \sum_{i \in B_j} x_{i} = 0; \forall k \in B \]

\[x_{i} \in \{0, 1\}; \forall k \in B \text{ and } l \in A_1 \cup A_2 \]

\[\alpha_{k}, \beta_{k} \geq 0; \forall k \in B \]

در صورت بندی مسأله، رابطه (11) تابع هدف عبارت از

شش جزو است که شامل هری یک انتخاب خدمه، اقتام، حق اموربیت، هر بار سواری به قطار، و هزینه اضافه

یا کم بودن طول اموربیت می‌باشد. محدودیت رابطه (12) تضمین می‌کند احتمال سیستم، وظیفه پوشش داده شوند و از سوی دیگر در

مسیرهای مختلف سیستم، وظیفه پوشش به‌طور متغیران جوانی است. انتخاب شود.

محدودیت رابطه (11) با استفاده از متغیر کمکی \(a\) برای

زمان بیش از TW زمان بیش از \(X_k\) اولین سویه در مجموعه \(B_k\) است که

اگر انتخاب شود به معنی است که بخشی از اموربیت ها

در مجموعه \(B_k\) خواهد بود. بخش \(B_k\) ها دارای سویه‌های \(B_k\)
گره ای است که بعد از آن امکان انجام وظیفه وجود دارد. بنا بر این، حداکثر تعداد سویه های این مجموعه برای K خواهد بود.

N_k مجموعه هایی متعلق به از اعضا مجموعه B_k مجموعه B_k است که بعد از سویه h به شرح زیر ایجاد می شود: مجموعه B_k این گره را به مجموعه B_k اضافه می کند. نظر می گیریم.

$B_{kl,j}$ و $B_{lk,j}$ مجموعه هایی هستند که مشخص از زیر مجموعه B_k این مقدار برای سویه هایی که ندارند $m
eq k^*$ می باشد. مجموعه $B_{kl,j}$ و $B_{lk,j}$ می خواهد شونده به یک جزء m این دو سویه به مجموعه B_k اضافه می شوند مشروط بر آنکه رابطه زیر برقرار باشد.

$E_{tk} = \sum_{kl}^{m} \sum_{j}^{n} \sum_{p}^{q} (i,j) \in B_{kl}, j \in N(B_{kl})$ لینو

حل بهینه مسئله با استفاده از حل کننده لینو

برای ورود اطلاعات، پردازش و ساختن مجموعه های مورد نظر نیاز به برنامه نویسی رایانه ای مستقل بهره است. که از نرم افزار استفاده شده است. لینو، برنامه نویسی رایانه ای است که به عنوان پردازش ورودی به نرم افزار حل کننده مسئله است به دسترسی به اکثر نسخه‌ها از لینو در حل مسئله مورد استفاده قرار گرفته است. این است از لینو مسئله تولید شده برای حل مسئله با LINGO مسئله نشان داد که تا 24 سویه وظیفه به خویش قابل حل هستند ولی برای 50 سویه وظیفه و بیشتر، به دلیل مشکل حاصل مانیتور مورد استفاده است (هسته پنتوم II کامپیوتر مورد استفاده).

حل فراهم نشده است به اطمینان دارم که تنها تعداد سویه های وظیفه قابل حل مسئله را تعیین می کنند، بلکه ترتیب قرار گرفتن سویه های وظیفه در موقعیت سطحی و مکانی و همچنین پارامترهای هنجون، T_{max} و مقدار در مجموعه (k, l, m, n) نشان داده شده که اگر سویه B_k مجموعه ما A_1 و A_2 ساخته ورود به مجموعه B_k
کمترین افزایش را در کل معلومهای ها داشته و از طریق محدودیت‌های رعایت شدن. برای کنترل انتخاب هر سوی از سوی‌های مشتق شده از گره‌ای که در آن قرار داریم، قواعد متعددی در نظر گرفته می‌شوند که سطح الکتریکی مقدار بالا، سطح الکتریکی مقدار بالا، و سطح الکتریکی مقدار بالا می‌باشد.

برای مثال، مسیر انتقال در راه‌های ایران در کاری که دارای حدود 700 سویه و طبقات با 1/3 فاکتور یک دوره زمانی دو هفته‌ای است، محدودیت‌های ها حدود 8000 و تعداد متقابل‌های حدود 15 میلیون بر روی می‌شود. بقیه است تیم‌های مسایل با مدل‌های عادی پیش‌سازی قابل حل نمی‌شوند، ولی بافت‌های های حمایت‌گری که در زمان قابل قبولی توانایی به جواب بردسته پردازیده می‌باشد.

روش حل استراتژی بر اساس الگوی منطقی محدودیت‌ها مدل‌های ترانزیت منطقی در سال‌های گذشته برای حل مسایل پیچیده ترانزیت ریزی، زمان‌بندی، تولید و تخصیص استفاده شده که مولفه‌ای آزمایشی است [5]. به طور نمونه می‌توان به مقاله‌ی شرکت آمریکایی اشاره نمود. در این مقاله به کاربردهای روش ترانزیت منطقی محدودیت‌ها در سیاست‌های زمان‌بندی برخی از این استراتژی بانک‌های منطقی محدودیت‌ها استفاده شده. در این بخش سازی در حالتی که منچوری‌های توصیف گیری در حوزه محدودیت‌های ملی مصرف و کپ امتیاز انتخاب شدن دارد، با استفاده از تحقیق منطقی هستند. متغیف‌های توصیف گیری را مقدار متغیفی می‌دانند. در صورتی که می‌توان مسیر را با دست نشان داده‌شده باشد، سیستم‌های تاکسی منطقی گزارش مجموعه‌ای از قواعد، واقعیت و تفسیر کننده واقعیت است. با توجه به این موضوع، با استفاده از شکل تعیین بهترین عامل ترتیب مدل‌سازی بکار برده می‌شود.

روش حل استراتژی ارائه شده بر اساس است که یافتن مسیرهای منطقی از نظریه شرکه و تحت قواعدی در مسیرهای منطقی مورد نظر یکی می‌شود تا به هدف
شکل 7: نمودار فرآیند حل انتخاب زمان برندی خدمه با روش الگو سازی منطقی محدودیت ها.
جدول ۱: مقایسه حل پیشنهادی حل از ازاین هرکدام روش انتخابگر اینکه از روش انتخابگر منطقی محدودت ها.

جدول ۲: جواب حل انتخابگر و روش موجود برای زمان بندی رؤسای قطار.
سیرت پیدا کردن جواب در امکان وارد کردن قواعد بیشتری که در عمل وجود دارد و همچنین امکان ترکیب آن با مسائلی توسط یکی از درمانگرها و یکی از مدیران است. اگر چه نزدیکی بهونه جواب‌های برای مسائل مربوط به مسیر مسلمان‌زبان است و به اساس تجربی این ادعا وجود دارد که تا حد اندازه‌گیری نشان می‌دهد.

توضیحات مسیر مسلمان‌زبان است. همگی او در ذهن یک پرستار باید شهادت یکی از روش‌های درمان‌زبانی باشد. در این نظر گرفته‌های یکی از مهم‌ترین این کارآفرینی‌ها در اصل می‌باشد. لیکن دلیل برای عدم امکان بکار گیری آن در شبکه‌های اجتماعی انسان برای مسیرهای طولانی‌مدت یکی از مهم‌ترین مسائل است.

ملاحظات

دلیل برای عدم امکان بکار گیری آن در شبکه‌های اجتماعی انسان برای مسیرهای طولانی‌مدت یکی از مهم‌ترین مسائل است.

طرح سویه (TTe) است (m, e) است.

\[
TTe = ET_{max} - ST_{ke}
\]

۲. مشخصی می‌کنیم TTe در کدام ناحیه قرار دارد:

\[
\text{ناحیه اول: } \text{کمتر از } 2 \text{TW}
\]

\[
\text{ناحیه دوم: } \text{بین } \frac{3\text{TW} \cdot T_{max}^2}{2} \text{و } \frac{3\text{TW}}{2}
\]

\[
\text{ناحیه سوم: بزرگتر از } \frac{3\text{TW} \cdot T_{max}^2}{2}
\]

۳. برای هر ناحیه به ترتیب زیر حساب می‌کنیم: ZPe و ZPe:

\[
ZPe = P \times (T_{ke} - T_{ke}^2)
\]

\[
ZPe = P \times (T_{ke} - T_{ke}^2)
\]

این روش حلقه‌ای با پنجم نواصیب ویژه‌ای بسیاری در محیط زمین‌شناسی اکسکس بهبود است. که جواب‌ها به دست آمده از آن با جواب‌های به دست آمده از روش حل به‌هم‌آمده مسائل (P) می‌باشد.
معطایی زمان بندی خدمت

عناون نقط تریخی، شهرهای سمنان و زنجان نیز در نظر گرفته شده‌اند.

در وضعیت موجود، با روش دستی، هر ماموریت عبارت از یک مسیر رفت و برگشت به یک از شهرهای یاد شده است که با اطلاعات دریافتی از برهم‌کنش حرکت‌های ماموریت، پاینده است که با اطلاعات دریافتی از برهم‌کنش حرکت‌های ماموریت، پایین‌ترین لایه را تغییر می‌دهد. همچنین محدودیت‌های تغییر حداکثر تعداد ماموریت و متعادل کرد.

طول زمان ماموریت در نظر گرفته شده. جهت مقایسه، روش موجود با روش حل الگوریتمی در این مقاله جدول (۱) اطلاعات این روش را نشان داده است. در این جدول کمیت ماموریت‌های تعریف شده در هر روش از نظر تصمیم‌گیری می‌تواند مورد بررسی قرار گیرد.

 siendo 9 محتوا خدمت در خجن ماموریت در طول دوره زمانی برای مثال 376 .

جهت مقایسه هزینه، تعادل نوری انسانی با خدمت مورد نیاز در هر روش نیز با داده‌های موجود که در فرض مسئول مسئول تعداد کل در هر رنگ برای هر خدمت تعادل خدمت مورد نیاز با انتخاب ۱۰۰ درصد داده شده است. لازم به ذكر است که تعداد رسیدگی به قطعیت موجود برای مسئولیت در نظر گرفته شده اطلاعات دریافتی از شرکت را باید بیش از ۸۰ نفر باشد. ولی برای یکسان بودن روش ماموریتهای این مسئولیت همچنین محاسبات منوط به داشتن اقلام هزینه از یک روش ماموریت نیاز در روش اینکه هcoon از حداکثر خدمت‌های کمیت زمان باشد. لذا محتوا تعادل خدمت در هر روش تعداد در

مدل‌سازی زمان بندی خدمت...

مقطعه ۶ ساعته را در طول دوره برنامه‌ریزی ترمیم کرده‌ایم و در شکل (۹) مشاهده می‌کنید که مداکتر تعادل خدمت در هر ماموریت تقریباً ۲۲ نفر بوده و این مداکتر تعادل خدمت در هر ماموریت تقریباً ۲۲ نفر بوده و این مداکتر تعادل خدمت در هر ماموریت تقریباً ۲۲ بعد است که با اطلاعات دریافتی از برهم‌کنش حرکت‌های ماموریت، پایین‌ترین لایه را تغییر می‌دهد. همچنین محدودیت‌های تغییر حداکثر تعداد ماموریت و متعادل کرد.
جدول 3: مقایسه هزینه‌های جواب روش ابتکاری با وضعیت موجود زمان‌بندی روسای قطره‌ها.

<table>
<thead>
<tr>
<th>جمع</th>
<th>ΣCT</th>
<th>ΣCB</th>
<th>ΣCH</th>
<th>ΣCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>888/23</td>
<td>546</td>
<td>346</td>
<td>764/32</td>
<td>794/32</td>
</tr>
<tr>
<td>840/17</td>
<td>273/61</td>
<td>284</td>
<td>633</td>
<td>711/95</td>
</tr>
</tbody>
</table>

گرفتن‌های اثر این کاهش هزینه بجای زمان دوختن‌های برای مدت یکسال در نظر گرفته شود با کارگری روی حلق ابتکاری معادل 1246 میلیون ریال صرف جویی سالانه در هزینه‌ها انجام خواهد کرد. در صورتی که این مدل برای کلیه خدماتی که در قطار احتمال وقوعی می‌کند، کاهش می‌تواند قطعی نمایندگی می‌شود، تعیین داده شود.

این امکان بهره‌برداری بهتر و سرعت‌تر جریان‌های بود.

شرکت رجا در سال 1369 با گردش مالی 756 میلیارد ریال دارای میانگین 2364 ریال هزینه پرسندی 889 میلیارد ریال به است. تعداد ماموریت‌های قطره‌های 605 نفر و تعداد روسای قطره‌ها 10 نفر به حساب ترتیب هزینه هزینه پرسندی ماموریت‌های ورودی قطره‌ها 16/91 و 72 میلیارد ریال بر این شده است. ملاحظه می‌شود که از نظر تعداد روستای قطره‌ها 19% هزینه‌های پرسندی ماموریت قطره‌ها را تشکیل می‌دهند. لذا با تعیین جزییات نقشی ناشی از ابتکاری در زمان‌بندی روستای قطره‌ها به کل برسندی می‌توان 558/6 میلیون ریال صرف جویی سالانه را در شرکت رجا انتظار داشت.

نتیجه‌گیری

در این مقاله نشان یک روی خاص برای تحت شکته تعبیر کردن مسائل زمان‌بندی خدمه در حالت‌یاندیز قرارگاهی ارائه نشده. سپس شهاد جدیدی از مدل‌های برای این مسائل بی‌پایه شکته تعبیر شده ارائه گردید که نسبت به رویکرد مدل‌های ریاضی، این مسائل را کاهش می‌دهد. وی برای مسائل بزرگ محدودیتهای سخت‌افزاری (حجم و سرعت رایانه‌های مورد استفاده) امکان استفاده.

واژه‌های انگلیسی به ترتیب استفاده در متن

1 - Crew Scheduling Problem (CSP)

2 - Leg Segment

3 - Relief Points

4 - Rostering

5 - Constraints Logic Pattern

6 - Set Covering

7 - Set Partitioning